
Efficient Reconstruction of Random Multilinear Formulas

Ankit Gupta
Microsoft Research India

t-ankitg@microsoft.com

Neeraj Kayal
Microsoft Research India

neeraka@microsoft.com

Satya Lokam
Microsoft Research India
satya@microsoft.com

Abstract— In the reconstruction problem for a multivariate
polynomial f , we have blackbox access to f and the goal is to
efficiently reconstruct a representation of f in a suitable model of
computation. We give a polynomial time randomized algorithm
for reconstructing random multilinear formulas. Our algorithm
succeeds with high probability when given blackbox access to the
polynomial computed by a random multilinear formula according
to a natural distribution. This is the strongest model of computation
for which a reconstruction algorithm is presently known, albeit
efficient in a distributional sense rather than in the worst-case.
Previous results on this problem considered much weaker models
such as depth-3 circuits with various restrictions or read-once
formulas.

Our proof uses ranks of partial derivative matrices as a key
ingredient and combines it with analysis of the algebraic structure
of random multilinear formulas. Partial derivative matrices have
earlier been used to prove lower bounds in a number of models of
arithmetic complexity, including multilinear formulas and constant
depth circuits. As such, our results give supporting evidence to the
general thesis that mathematical properties that capture efficient
computation in a model should also enable learning algorithms for
functions efficiently computable in that model.

Keywords-arithmetic circuits; multilinear formulas; reconstruc-
tion; learning.

1. INTRODUCTION

We study the problem of reconstructing a multivariate
polynomial: given blackbox access to a hidden polynomial
f ∈ F[x1, . . . , xn] over a finite1 field F, reconstruct a
representation of f in some suitable model of computa-
tion. A reconstruction algorithm can adaptively query the
blackbox to evaluate f on inputs of its choice from Fn. Its
efficiency is measured in terms of the number of queries
and the running time. We typically assume f itself to be
efficiently computable in some model of computation, e.g.,
depth-3 circuits of polynomial size, and also require the
reconstruction algorithm to produce a succinct representation
of f in some (possibly different) model of computation. The
most obvious representation of a multivariate polynomial is
its formula as a sum, weighted by coefficients from F, of
monomials, i.e., a depth-2 ΣΠ formula. In this case, the
problem of reconstruction is more commonly referred to
as interpolation: given blackbox access to a polynomial,
produce its representation as a sum of products. However,
many interesting polynomials, e.g., determinant, have expo-
nentially long (in the number of variables) representations

1Many of the definitions make sense for infinite fields as well.

as a sum of products, whereas as a straight line program
or an arithmetic circuit, they can be represented much
more succinctly. The reconstruction problem demands such
succinct representations as outputs and hence is a gener-
alization of the interpolation problem. In its most general
formulation, e.g., produce (roughly) the smallest arithmetic
circuit for f , the reconstruction problem is extremely hard. If
a circuit class C has a deterministic reconstruction algorithm,
it is easy to see that C also has a deterministic (blackbox)
polynomial identity testing (PIT) algorithm. On the other
hand, a deterministic PIT implies superpolynomial size
lower bounds against C for an explicit polynomial. Hence,
a deterministic reconstruction algorithm for C is at least
as hard as proving superpolynomial lower bounds against
C. Thus, much of the research in this area focusses on
reconstructing polynomials efficiently computable by weaker
variants of arithmetic circuits.

Previous work on the reconstruction problem focussed on
polynomials computable by restricted constant depth arith-
metic circuits and read-once formulas. In particular, depth-2
circuits [4], i.e., interpolation problem, depth-3 circuits with
bounded top fan-in and multilinear depth-3 formulas with
bounded top fan-in [9], [3]. See [11] for more details on
previous work.

In this paper, we consider the model of multilinear for-
mulas. An arithmetic formula, using + and × operations, is
multilinear if the formal polynomial computed by each of its
subformulas is multilinear. Our main result is a randomized
reconstruction algorithm for a class of random multilinear
formulas. The algorithm uses as a blackbox a multilinear
formula randomly chosen according to a natural distribution
(see Section 2 below for details). It succeeds with high
probability w.r.t. its internal randomness and the choice of
the formula from the distribution. Its output is a multilinear
formula of the same size as the hidden formula; it is, in
fact, the smallest multilinear formula computing the hidden
polynomial. This is the strongest model, and the first one
of super-constant depth, in arithmetic complexity for which
an efficient (even in a randomized or distributional sense)
reconstruction algorithm is shown. We further remark that
a slight variant of the problem of reconstructing multilinear
formulas, even for depth three formulas, is known to be NP-
hard. Specifically, Håstad [1] showed that reconstructing the
smallest set-multilinear formula (an even weaker model than

multilinear formulas) for a given set-multilinear polynomial
is NP-hard. This indicates that without some kind of a
distributional assumption, it would be unrealistic to hope
for a reconstruction algorithm for multilinear formulas.
Alternatively, it indicates that there is unlikely to be a worst-
case reconstruction algorithm for multilinear formulas.

From a broad perspective, reconstructing polynomials
from arithmetic complexity classes is, in some sense, anal-
ogous to learning concept classes of Boolean functions
using membership and equivalence queries. (see Chapter
5 of survey by Shpilka and Yehudayoff [11] for justifying
arguments for the analogy to the Boolean world and, more
generally, for previous work in this area.) While research on
the theory of learnability in the Boolean world has evolved
into a mature discipline, thanks to fundamental notions such
as PAC learning due to Valiant, research on learnability in
the arithmetic world has been gaining momentum only in
recent years.

A recurring theme in Boolean and arithmetic domains is
that techniques used to prove lower bounds for a model
of computation are often helpful in designing learning
algorithms for that model. At a very high level, a lower
bound proof identifies mathematical properties of a model of
computation that capture efficient computation in that model.
Thus functions efficiently computable in that model should
possess the same or similar properties and they should also
be useful in learning such functions. This thesis has been
borne out in the Boolean world by several examples, e.g.,
Fourier approximability of AC0 circuits is useful in both
lower bounds and learning algorithms. In the arithmetic
world, we see a similar trend, but there are still an abundant
number of open questions suggested by this general theme.

Our results in this paper, and in this direction in general,
are guided by, and provide supporting evidence to, the thesis
mentioned above. One of the key ingredients of our proof
is the use of partial derivative matrices of polynomials
computed in a multilinear formula. We note that properties
of partial derivatives of a polynomial have been an important
tool in proving lower bounds in a variety of models. In
particular, Raz [7] used them to prove lower bounds on
multilinear formulas and Raz and Shpilka used them for
lower bounds on constant depth circuits. Nisan [6] also
used them to prove lower bounds in the noncommutative
setting. Thus it is to be expected that properties of partial
derivatives of polynomials are useful in reconstruction algo-
rithms. Indeed, Klivans and Shpilka [5] prove that whenever
the space of partial derivatives has polynomial dimension,
one has polynomial time reconstruction algorithms. This
implies reconstruction algorithms for some restricted ver-
sions of depth-3 circuits and Arithmetic Branching Programs
(ABP’s) since their partial derivatives span low-dimensional
spaces. This approach, however, cannot be used for multi-
linear formulas since there are multilinear formulas whose
partial derivatives span spaces of exponential dimension.

Nevertheless, Raz [7] combines rank arguments about partial
derivative matrices and combinatorial arguments based on
random restrictions to prove quasipolynomial lower bounds
on the multilinear formula complexity of the determinant
and permanent polynomials. In this paper, we also exploit
rank arguments about partial derivative matrices of polyno-
mials computed in a multilinear formula and combine them
with additional structural properties of random multilinear
formulas to derive our reconstruction algorithm.

2. DEFINITIONS AND MAIN RESULT

We recall that an arithmetic formula is a binary tree
such that (i) each leaf is labeled by either a variable from
X = {x1, . . . , xn} or an element of the field F, (ii) each
internal node is either + gate or × gate, and (iii) The in-
coming edges of a + gate are also labeled by constants from
F. A + gate computes the linear combination of its inputs
with coefficients given by the constants on the incoming
edges of the gate. A × gate computes the product of its
inputs. Each gate v in the formula is naturally associated
to a polynomial pv ∈ F[X] computed at v. In particular,
the polynomial computed at the root (output node) is the
polynomial computed by the formula. The size of a formula
is the number of leaves in the tree. The (multiplicative) depth
of a node is the number of× gates on the path from that node
to the root. The depth of the formula is the maximum depth
of a leaf. An arithmetic formula is said to be multilinear
if each gate in it computes a multilinear polynomial, i.e., in
each of its monomials the power of every input variable is
at most one.

Definition 2.1. Syntactic Multilinear Formulas: Let Φ be
an arithmetic formula over X = {x1, . . . , xn}. Let Φv
denote the subformula rooted at a node v and Xv be the
set of variables that appear in Φv . Then, Φ is said to be
syntactic multilinear if for every product gate v = v1 × v2

of Φ, the sets Xvl and Xv2 are disjoint.

Note that for any multilinear formula, there exists a
syntactic multilinear formula of the same size that computes
the same polynomial (see [7]). Hence, we often omit the
word “syntactic” while referring to multilinear formulas.
Moreover, any syntactic multilinear formula can be con-
verted into a syntactic multilinear formula with alternating
layers of + and × gates with only a polynomial blow-up in
size (see [8]).

A Natural Distribution on the set of Multilinear Formulas:

Our reconstruction algorithm uses, as a blackbox, a ran-
dom multilinear formula drawn according to a distribution
as defined below. Informally, this distribution constructs a
binary2 tree with + and × gates at alternating levels (with a
+ gate at the root). Each + gate computes a random linear

2we assume this for the clarity of presentation and handle the k-ary case
in Section A.

combination of its inputs over F. Moving down the tree,
at each × gate, we partition the variables into two equal-
sized sets and recursively build a subformula rooted at each
of this × gate. We stop the recursion when the number
of variables is small enough (we choose this to be about
log3 n for technical reasons and ensure an error probability
of 1/poly(n).)

A formal definition of the distribution follows:
Let M(X,F) be the set of all possible syntactic mul-

tilinear formulas over the variable set X = {x1, . . . , xn}
and a (sufficiently large) finite field F. We propose the
following method SAMPLE(X,F) to sample a random syn-
tactic multilinear formula from the set M(X,F), thereby
inducing a natural P-samplable distribution D(X,F) on the
set M(X,F). This distribution also depends on an integer
parameter βn, which we assume to be Θ(log3 n).
Sampling Method SAMPLE(X,F):

Step 1: Ψ ← CONSTRUCT(X,+), where
CONSTRUCT(X, op) is defined below.
Step 2: Let W be the set of wires in Ψ incident to a
+ gate. Let Φ be the syntactic multilinear arithmetic
formula obtained by labeling each wi ∈ W by a
randomly and independently chosen ci ∈R F.
Step 3: return(Φ).

CONSTRUCT(X, op):

Case 1: |X| ≤ βn. Let Ψ be the formula with a +
gate at the root that has wires incident to it from each
xi ∈ X .
Case 2: |X| > βn and op = ×. Partition X randomly
into two equal sized sets X1, X2 and let Ψ1 ←
CONSTRUCT(X1,+), Ψ2 ← CONSTRUCT(X2,+).
Let Ψ be the formula with a × gate at the root and
Ψ1,Ψ2 as its two children.
Case 3: |X| > βn and op = +. Let Ψ1 ←
CONSTRUCT(X,×), Ψ2 ← CONSTRUCT(X,×). Let
Ψ be the formula with a + gate at the root and Ψ1,Ψ2

as its two children.
Step: return(Ψ).

We now state our main reconstruction result for multilin-
ear formulas.

Theorem 2.2. Let Φ ∼ D(X,F) be a random multilinear
formula sampled as above and let Φ̂ ∈ F[X] be the
polynomial computed by Φ. Then, there is an nO(1)-time
randomized algorithm A which, given blackbox access to
Φ̂, constructs a syntactic multilinear formula ΦA of size at
most size(Φ) and such that

Pr[Φ̂A 6= Φ̂] ≤ nO(1)

|F|
+

1
nΩ(1)

,

where the probability is taken over the randomness in the
choice of Φ and the internal randomness of A.

3. BASIC IDEA AND APPROACH

Suppose we have blackbox access to the output polyno-
mial f of a random multilinear formula Φ. By querying f
at points of our choice, we want to recover Φ. How do we
do so? We give an overview of our approach to do this.
Determining the nature of the output gate: Observe that
if the output node was a × gate then the output would
be a reducible polynomial 3. The converse is not true in
general. That is, it can happen that the output gate is a +
gate and f is reducible as well. At this point we invoke
the assumption that the formula Φ is chosen randomly and
deduce that with high probability over the random choice
of Φ the output node is a × node if and only if f is
reducible (Lemma 5.9). Thus, we can use the blackbox
factoring algorithm of Kaltofen [2] (or alternatively the
multilinear factoring algorithm of Shpilka and Volkovich
[10]) to determine whether f is reducible and this helps
us answer our first question. The next thing that we would
like to do is get blackbox access to the two children. Once
we have that we can recursively do the reconstruction of
the two subformulas. There are two cases depending on the
nature of the output gate.
Case I: Output node is a × gate. In this case we factor
f using Kaltofen’s algorithm. Now it can happen (in rare
circumstances) that the number of factors of f is larger than
the number of children of the output node. For a generic
(i.e. randomly chosen) formula Φ these two quantities will
however be equal (Lemma 5.9) so that Kaltofen’s algorithm
provides blackbox access to the two children of the output
node. We then recursively compute the formulas for the two
children.
Case II: Output node is a + gate. In this case we need
to go one level deeper. The two children of the output node
are × gates (except when we are in the base case) so that
the output polynomial f is of the form

f = A ·B + C ·D.

Our aim will be to obtain blackbox access to the four
‘grandchildren’ A,B,C and D. If we can do that then we
can recursively compute formulas for these polynomials and
we would be done. At this point we use the fact that we
are dealing with (syntactic) multilinear formulas. It means
that there exists a partition of the set of variables into four
(disjoint) subsets ū, v̄, x̄ and ȳ such that

f(ū, v̄, x̄, ȳ) = A(ū, v̄) ·B(x̄, ȳ) + C(v̄, x̄) ·D(ū, ȳ). (1)

In general this partition of the set of variables can be
arbitrary in which case it becomes much more difficult
to find Φ. However, when Φ is random then with high
probability all these sets are roughly of the same size

3If one of the children was a constant then the subtree rooted at that
node can be discarded and we would have a smaller formula computing
the same polynomial

(Lemma 5.1). Now it turns out that we can exploit the ideas
in the lower bound proof of Raz [7] to find this partition
of the set of variables. Very roughly, the idea is that for
the right partition the rank of a certain related matrix will
be very small whereas for every other partition the rank
of this matrix will be much larger. This is the one of the
key technical arguments (Theorem 5.6) in our work and
is described in its proof sketch. For now assume that we
know the subsets ū, v̄, x̄ and ȳ. Knowing these subsets, how
do we obtain blackbox access to f? The idea is that if
in equation (1) we substitute each ū-variable and each v̄-
variable to some random values say ū = ā and v̄ = b̄ then
A(ā, b̄) becomes a constant so that the degree of (A · B)
drops down after this substitution (with high probability, this
substitution does not change the degree of C ·D). This means
that the homogeneous part of largest degree of f(ā, b̄, x̄, ȳ)
is a product of the homogeneous parts of largest degrees of
C(b̄, x̄) and D(ā, ȳ). Thus factoring the homogeneous part
of largest degree of f gives us blackbox access to the largest
degree homogeneous parts of C(b̄, x̄) and D(ā, ȳ). This idea
can be extended suitably (see Lemma 5.5) to obtain blackbox
access to the whole of each polynomial A,B,C and D. This
completes our brief overview of the reconstruction algorithm
for multilinear formulas.

4. PRELIMINARIES AND NOTATIONS

Lemma 4.1 (Chernoff’s bound). Let ζ1, . . . , ζn be indepen-
dent uniform 0-1 random variables . Then,

Pr[(1−δ)n/2 ≤
∑
i

ζi ≤ (1+δ)n/2] ≥ 1−2 exp(−δ2n/8).

Lemma 4.2 (DeMillo-Lipton-Schwartz-Zippel). Let f ∈
F[x1, . . . , xn] be a non-zero polynomial of degree d ≥ 0.
Let S be a finite subset of F and let r1, . . . , rn be selected
randomly from S. Then

Pr[f(r1, r2, . . . , rn) = 0] ≤ d

|S|
The above lemma automatically results in the following PIT

algorithm which succeeds with probability ≥ 1− d
|S| .

Algorithm 1 (Blackbox PIT). Given blackbox access to
a polynomial f ∈ F[x1, . . . , xn] of degree d, query
f(r1, r2, . . . , rn) to the blackbox for r1, . . . , rn ∈R S,
where S is any finite subset of F. Conclude f = 0 iff
f(r1, r2, . . . , rn) = 0.

Kaltofen’s Blackbox Factoring: We state the multivariate
blackbox factoring algorithm by Kaltofen [2] (also see [10])
in context of multilinear polynomials,

Lemma 4.3 (Kaltofen’s Blackbox Factoring). There is a
randomized polynomial-time algorithm that, given blackbox
access to a multilinear polynomial f ∈ F[x1, . . . , xn],
with probability 1 − 2−Ω(n), outputs blackboxes to all the
irreducible factors of f .

Notation: [n] denotes the set {1, 2, . . . , n}. For a polynomial
f , f [d] denotes the homogenous degree-d part of f . Tuples
would be denoted by placing a bar over a letter, e.g. x̄.
For a tuple β̄ = (β1, . . . , βn), iβ̄ would denote the tuple
(iβ1, . . . , iβn). For an arithmetic formula Φ, the polynomial
computed at the root is denoted by Φ̂.

5. RECONSTRUCTING MULTILINEAR FORMULAS

5.1. Structural Properties of Multilinear Formulas from
D(X,F)

Before we sketch the proof of Theorem 2.2, we state and
examine some structural properties of random multilinear
formulas which would be essential for our algorithm to
work. Due to space constraints, the proofs of the lemmas
here have been omitted.

Our first lemma says for the variables in the subformula
rooted at a + gate, the two partitions induced by the children
(× gates) of that gate intersect more or less “transversally,”
i.e., each block of either partition is split nontrivially (in fact
in a rather balanced way) by the other partition. Moreover,
a child polynomial of a × gate (a grandchild of the + gate)
here is not annihilated by zeroing out either subset of its
variables induced by the partition at the sibling product gate.

Lemma 5.1. Let Φ ∼ D(X,F). Then, for all nodes of Φ,
the following hold with probability at least 1− nO(1)

|F| −
1

nΩ(1) :
1) The polynomial computed by a node at (multiplicative)

depth h is a homogenous polynomial of degree n
βn2h

.
2) The polynomial computed at a + gate is of the form

α.A(v̄, ū)B(x̄, ȳ) + β.C(v̄, x̄)D(ū, ȳ) where for all
p̄ ∈ {v̄, ū, x̄, ȳ}, |p̄| ≥ 1

8 |{v̄ ∪ ū ∪ x̄ ∪ ȳ}|.
3) In the above polynomial computed at a + gate, for

all R ∈ {A,B,C,D}, say R(p̄, q̄), R(0̄, q̄) 6= 0 and
R(p̄, 0̄) 6= 0.

Given a multilinear polynomial f over two variable sets
Y = {y1, . . . , ym} and Z = {z1, . . . , zn}, define Mf as a
2m× 2n matrix whose (p, q) entry, p ⊆ Y and q ⊆ Z is the
coefficient of the monomial pq in f . The rank of Mf in this
case is denoted by RankY Z(f). We will use the following
properties of the partial derivatives matrix.

Lemma 5.2 ([7]). Given two multilinear polynomials f and
g over the variable set Y ∪ Z,

1) RankY Z(f + g) ≤ RankY Z(f) + RankY Z(g),
2) RankY Z(f.g) = RankY Z(f).RankY Z(g) if f and g

are polynomials on disjoint sets of variables, and
3) RankY Z(f) ≤ 2min(Y (f),Z(f)) where Y (f) and Z(f)

are the number of Y and Z variables that occur in f .

We next show that a random linear combination of two
multilinear polynomials can only increase the rank w.h.p.

Lemma 5.3. Let f and g be two multilinear polynomials
over the variable set Y ∪ Z and field F. Let S ⊂ F.
For α, β chosen uniformly at random from S ⊆ F, let

p be the probability that RankY Z(α · f + β · g) ≥
max{RankY Z(f),RankY Z(g)}. Then we have

p ≥ 1− 2min{|Y |,|Z|}

|S|
.

5.2. Simulating Blackbox Access to Subformulas

Our reconstruction algorithm will be recursive on the
structure of the (unknown, random) multilinear formula.
Hence, we will need to simulate blackbox access to its com-
ponents using blackbox access to the polynomial/formula
itself. The next lemma shows this for the homogenous
component of a given degree and the theorem below for
the grandchildren of a + node.

Lemma 5.4. Let F be a field with at least d + 1 elements
and let f ∈ F[x1, . . . , xn] be a degree d polynomial. Given
blackbox access to f we can simulate blackbox access to
f [r]’s, where f [r] denotes the homogenous degree-r part of
f .

Theorem 5.5. Let {{v̄}, {ū}, {x̄}, {ȳ}} be a partition
of {x1, . . . , xn} and f(v̄, ū, x̄, ȳ) = A(v̄, ū)B(x̄, ȳ) +
C(v̄, x̄)D(ū, ȳ) be a non-zero polynomial such that,

1) A,B,C,D are homogenous multilinear polynomials
over the indicated variable sets,

2) either deg(AB) 6= deg(CD) or deg(A) = deg(B) =
deg(C) = deg(D),

3) for all R ∈ {A,B,C,D}, say R(p̄, q̄), R(0̄, q̄) 6= 0
and R(p̄, 0̄) 6= 0.

4) for all p̄ ∈ {v̄, ū, x̄, ȳ}, |p̄| ≥ δn, for some δ > 0
Then there is an nO(1)-time randomized algorithm
that, given blackbox access to f and the partition
{{v̄}, {ū}, {x̄}, {ȳ}}, constructs blackboxes for A,B,C,D
with probability at least 1− nO(1)

|F| −
1

2Ω(n) .

Proof: The proof follows from the algorithm
TRICKLEDOWN below.
Input: The partition {{v̄}, {ū}, {x̄}, {ȳ}} and an oracle
for A(v̄, ū)B(x̄, ȳ) + C(v̄, x̄)D(ū, ȳ) where A,B,C,D are
polynomials satisfying the above stated properties.
Output: Blackboxes for A,B,C,D.
Algorithm: TRICKLEDOWN

Step 1: Using blackbox for f = AB + CD, construct
blackboxes for f [i]’s for all i ∈ [n].
Step 2: For i ∈ [n], using blackbox PIT, determine
if f [i] 6= 0. If there is only one such i then proceed
to the next step. Otherwise let f [i], f [j] be non-zero.
For f [i](v̄, ū, x̄, ȳ), determine using blackbox PIT, if
f [i](v̄, ū, 0̄, 0̄) is 0. If yes, conclude f [i] = AB and
f [j] = CD, else the other way. Using Kaltofen’s fac-
toring algorithm, construct blackboxes for irreducible
factors of A(v̄, ū)B(x̄, ȳ). For each factor h(v̄, ū, x̄, ȳ),
determine, using blackbox PIT, if h(0̄, 0̄, x̄, ȳ) is 0. If
yes, conclude it is a factor of A else B. Similarly,
construct blackboxes for C and D.

Step 3: Determining degrees of A,B,C,D. Using
Kaltofen’s factoring algorithm, gain blackbox access to
irreducible factors of f(v̄, ū, 0̄, 0̄) = C(v̄, 0̄)D(ū, 0̄).
For each factor h, determine, using blackbox PIT, if h
becomes the zero polynomial after instantiating v̄ to 0̄.
If yes it is a factor of C(v̄, 0̄) else D(ū, 0̄). Similarly,
construct blackboxes for C(0̄, x̄) and D(0̄, ȳ). Having
constructed blackboxes for C(v̄, 0̄) and D(ū, 0̄), con-
clude d = deg(C) = log

(
C(2ᾱ,0̄)
C(ᾱ,0̄)

)
for a randomly

chosen ᾱ ∈ F|v̄|, and similarly for D, A, B.
Step 4: Constructing blackbox for C. To determine
C(ᾱ, β̄), for any ᾱ ∈ F|v̄|, β̄ ∈ F|x̄| we will make
the substitution x̄ := β̄ and ȳ := γ̄ for γ̄ ∈R F|ȳ|. In
the ensuing discussion we shall denote by ĝ(v̄, ū) the
polynomial obtained by making the above substituion
in a polynomial g(v̄, ū, x̄, ȳ). i.e. ĝ def= g(v̄, ū, β̄, γ̄).
Then, f̂ := f(v̄, ū, β̄, γ̄) is of the form

A(v̄, ū)B(β̄, γ̄)︸ ︷︷ ︸
only degree deg(A) terms

+ C(v̄, β̄)D(ū, γ̄)︸ ︷︷ ︸
terms can have degree > deg(A)

= A(v̄, ū)B(β̄, γ̄) + Ĉ(v̄)D̂(ū).

Then,

Ĉ(v̄) = Ĉ [d](v̄) . . .+ Ĉ [1](v̄) + C(0̄, β̄)

while

D̂(ū) = D̂[d](ū) . . .+ D̂[1](ū) +D(0̄, γ̄).

Note that f̂ [2d] = Ĉ [d](v̄) · D̂[d](ū). Using Kaltofen’s
algorithm, obtain blackboxes for Ĉ [d](v̄) and D̂[d](ū)
using the blackbox for f̂ [2d]. As Kaltofen’s algo-
rithm gives blackboxes for irreducible factors of
C [d](v̄)D[d](ū) and any such factor depends on either
v̄ or ū, to find out if h(v̄, ū) depends on ū use blackbox
PIT on h(v̄, 0̄).
Step 5: Constructing blackboxes for Ĉ [i](v̄) and
D̂[i](ū) for i ∈ [d − 1] . Having gained blackboxes
for Ĉ [d](v̄) and D̂[d](ū) we note that,

f̂(v̄, ū)
[2d−1]

= Ĉ [d] · D̂[d−1] + Ĉ [d−1] · D̂[d] (2)

Also

f̂(v̄, 2ū)
[2d−1]

= 2d−1Ĉ [d] · D̂[d−1] + 2dĈ [d−1] · D̂[d]

(3)
Solving (2) and (3) for Ĉ [d−1], we get that Ĉ [d−1](v̄)
equals

1
D̂[d](ū)

[
1

2d−1
f̂(v̄, 2ū)

[2d−1]
− f̂(v̄, ū)

[2d−1]
]

As we have blackbox access to f̂ [2d−1] and D̂[d](ū), we
have blackbox access to Ĉ [d−1](v̄) (after instantiating
ū randomly to avoid making the denominator vanish in
the above equation). Similarly we have blackbox access

to D̂[d−1](ū). In general, after constructing blackboxes
for Ĉ [r](v̄) and D̂[r](ū) for all r ∈ [d′ + 1 : d]
and proceeding as above, one obtains the following
expression for Ĉ [d′](v̄).

Ĉ [d′](v̄) = E1 · (E2 − E3)

where

E1 =
2d

′

(2d − 2d′)D̂[d](ū)

E2 =
f̂(v̄, 2ū)

[d+d′]

2d′ − f̂(v̄, ū)
[d+d′]

E3 =
d−1∑

i=d′+1

(2d−i − 1)Ĉ [i](v̄)D̂[d+d′−i](ū)

Hence using the above procedure, blackboxes for
Ĉ [d′](v̄), for all d′ ∈ [d], can be constructed. Also,
using the blackbox for C(0̄, x̄) constructed in Step 3
determine C(0̄, β̄). This completes our blackbox for
C(v̄, β̄).
Step 6: Repeat the above 3 steps similarly with the
correct parameters to construct blackboxes for A,B and
D.

5.3. The Reconstruction Algorithm
RECONSTRUCT(OΦ̂, X,F,m)

We are now ready to present the reconstruction algorithm
for random multilinear formulas.
Input: oracle OΦ̂ for polynomial Φ̂ computable by a mul-
tilinear formula Φ sampled using
SAMPLE(X,F) where X = {x1, . . . , xn} and size m of the
seed partition4(m = Θ(log n)).
Output: multilinear formula Ψ such that |Ψ| ≤ |Φ| and
Ψ̂ = Φ̂, or else FAIL.

Step 1: Determining linearity: For any xi ∈ X , fi =
Φ̂|xi=1 − Φ̂|xi=0 is the coefficient polynomial of xi in
Φ̂. For all fi’s, using blackbox PIT on fi|xj=1−fi|xj=0,
determine if fi depends on xj . If for all xi with a non-
zero fi, fi does not depend on X , then Φ̂ is linear and
in this case simply interpolate Φ̂ exactly and output a
Σ-circuit for it.
Step 2: Reducible Φ̂: Using Kaltofen’s factoring algo-
rithm construct oracles for irreducible factors hi’s, of
Φ̂. If Φ̂ is irreducible proceed to the next step. Else
using blackbox PIT, as described in the previous step,
determine the variable sets of these factors. Recursively
using RECONSTRUCT, construct formulas Ψi’s for
hi’s. If RECONSTRUCT fails on any hi output FAIL.
Else, output a formula with × gate at the root and Ψi’s
as its children.

4size of the seed partition is kept unchanged while recursing.

Step 3: Determining a seed partition: Let Φ̂ =
A(v̄, ū)B(x̄, ȳ)+C(v̄, x̄)D(ū, ȳ). Randomly choose an
m-sized subset S of X . In Φ̂, instantiate the variables
in X \ S to random values over F to get Φ̂S =
AS(v̄S , ūS)BS(x̄S , ȳS) + CS(v̄S , x̄S)DS(ūS , ȳS) and
interpolate it in nO(1) time. Iterate over all possible
partitions {{v̄′′}, {ū′′}, {x̄′′}, {ȳ′′}} of S such that
the size of each set in them is at least γm (for a
small enough γ) and let {{v̄′}, {ū′}, {x̄′}, {ȳ′}} be
a partition such that Rank{v̄′}{ȳ′}(Φ̂S |v̄′,ȳ′) ≤ 2 and
Rank{ū′}{x̄′}(Φ̂S |ū′,x̄′) ≤ 2 where Φ̂S |v̄′,ȳ′ is Φ̂S with
variables in S\{v̄′, ȳ′} instantiated to random values in
F and similarly for Φ̂S |ū′,x̄′ . Having interpolated Φ̂S ,
this can be done in nO(1) time using Gaussian elimina-
tion as there are 2O(logn) such possible partitions and
the partial derivative matrix on O(log n) variables is of
size at most 2O(logn).
Step 4: Extending the seed partition
{{v̄′}, {ū′}, {x̄′}, {ȳ′}}: For all xi ∈ X \ S
do the following. Let Si = S ∪ {xi}. In Φ̂,
instantiate the variables in X \ Si to random values
over F to get Φ̂Si and interpolate it in 2O(logn)

time. Iterate over the following 4 partitions of Si,
{{v̄′, xi}, {ū′}, {x̄′}, {ȳ′}}, {{v̄′}, {ū′, xi}, {x̄′}, {ȳ′}},
{{v̄′}, {ū′}, {x̄′, xi}, {ȳ′}}, {{v̄′}, {ū′}, {x̄′}, {ȳ′, xi}}
and determine the partition {{v̄′′}, {ū′′}, {x̄′′}, {ȳ′′}}
such that, Rank{v̄′′}{ȳ′′}(Φ̂Si |v̄′′,ȳ′′) ≤ 2 and
Rank{ū′′}{x̄′′}(Φ̂Si |ū′′,x̄′′) ≤ 2 where Φ̂Si |v̄′′,ȳ′′ is
Φ̂Si with variables in Si \ {v̄′′, ȳ′′} instantiated to
random values in F. Attach xi to the appropriate block
of the seed partition. This can be done in 2O(logn)

time.
Step 5: Using TRICKLEDOWN algorithm and the above
determined partition {{v̄}, {ū}, {x̄}, {ȳ}} of X con-
struct oracles for A,B,C,D. Then, recursively using
RECONSTRUCT, construct formulas ΨR’s for R ∈
{A,B,C,D}. If RECONSTRUCT fails on for any of
them output FAIL. Else, let ΨAB be the formula with
× gate at the root and ΨA, ΨB as its children. Output
a formula Ψ with + gate at the root and ΨAB , ΨCD

as its children.
This completes the description of the algorithm
RECONSTRUCT. Algorithm A of Theorem 2.2 is now
essentially RECONSTRUCT, returning Ψ using blackbox
calls to Φ̂. (If RECONSTRUCT outputs FAIL, A outputs
a random multilinear formula.) The bound on the running
time of A is obvious. For correctness, it’s crucial to show
that the partition determined by steps 3 and 4 is, w.h.p., the
original partition of Φ. We do this in the next section. This
will complete the proof of Theorem 2.2. �

5.4. Uniqueness of the Seed Partition
Our main result for this section is Theorem 5.6,

which shows that for a large F, Steps 3 and 4 of the

RECONSTRUCT method determine the correct partition
w.h.p.. We need some preliminary discussion leading up to
the theorem.

Placement of random field elements on the wires of a random
multilinear formula drawn by SAMPLE(X,F):

While sampling a multilinear formula from the set
M(X,F) we first sampled a formula without any field
elements using the method CONSTRUCT and later placed
field elements, chosen independently and uniformly from F,
on its wires. Also note that, distinct wires originating from
any of the xi’s, have distinct independent uniform r.v.’s on
them. For instance consider a multilinear formula on X and
that every xi has at most one wire originating from it. Let
the polynomial computed by the formula be

∑N
k=1 αk.Mk

where Mi’s are multilinear monomials. Now, if we place an
r.v. ri on the wire from xi then a term like α.x1x3xn be-
comes α.r1r3rn.x1x3xn. Hence essentially, the coefficient
of a multilinear monomial M on X , takes the form αM .Mr

where Mr is the multilinear monomial Πxi∈Mri and each
αM is independent of ri’s. These observations help us prove
Lemma 5.8 showing that for every monomial M there is
a set of logN monomials containing M such that the set
of coefficients of these monomials is mutually independent.
Also, it is easy to note that this remains true even after
instantiating variables to random values over F.

Instantiating n − m variables to random field elements in
Step 3 of the RECONSTRUCT method:

Let Φ be a random multilinear formula sampled us-
ing SAMPLE(X,F) and let Φ̂ = A(v̄, ū)B(x̄, ȳ) +
C(v̄, x̄)D(ū, ȳ). In Step 3 of the RECONSTRUCT method,
we choose an m-sized subset S of X randomly and in-
stantiate the variables in X \ S to random values over F to
get Φ̂S = AS(v̄S , ūS)BS(x̄S , ȳS)+CS(v̄S , x̄S)DS(ūS , ȳS).
Using Chernoff bounds it easily follows that w.h.p., sizes of
the sets v̄S , etc., are Ω(m). Let Y = S and Z = X \ S. In
the SAMPLE method, partitioning the set Y ∪Z at a × gate
(where |Y | ≤ |Z|) into two equal-sized sets {ā}, {b̄} can
be viewed as follows: label the yi’s in Y with independent
uniform 0-1 values, include the yi’s with label 0 in {ā} and
label 1 in {b̄}, and finally, place the Z variables randomly
to make |ā| = |b̄|. It is now easy to see that in the
above expression of Φ̂S , the polynomials AS , BS , CS , DS

are close in distribution to a multilinear formula sampled by
the following method on their respective variable sets.
Sampling Method SAMPLE2(X,F):

Step 1: Ψ← CONSTRUCT2(X,+).
Step 2: Let W be the set of wires in Ψ incident to a
+ gate. Let Φ be the syntactic multilinear arithmetic
formula obtained by labeling each wi ∈ W by a
randomly and independently chosen ci ∈R F.
Step 3: return Φ.

where CONSTRUCT2(X, op):

Case 1: X = {xi}. Let Ψ be a single + gate with xi
as one input and the field element 1 as the other input.
Case 2: op = ×. Label each xi ∈ X with independent
uniformly chosen 0-1 values. Include the xi’s labeled
0 in a set X1 and the rest in X2. If either Xi is empty
then repeat. Let Ψ1 ← CONSTRUCT2(X1,+), Ψ2 ←
CONSTRUCT2(X2,+). Let Ψ be the formula with a ×
gate at the root and Ψ1 and Ψ2 as its two children.
Case 3: op = +. Let Ψ1 ← CONSTRUCT2(X,×),
Ψ2 ← CONSTRUCT2(X,×). Let Ψ be the formula with
a + gate at the root and Ψ1 and Ψ2 as its two children.
Step: return Ψ.

Theorem 5.6 (Uniqueness of Partition). Let {{ā}, {b̄}} and
{{c̄}, {d̄}} be partitions of {ȳ} ∪ {z̄}, where |ā|, |b̄|, |c̄|,
|d̄|, |ȳ|, |z̄| are all Ω(m). Let A(ā), B(b̄), C(c̄), D(d̄) be
polynomials independently computed by random multilinear
formulas sampled using SAMPLE2 over the indicated vari-
able sets. Then for independent α, β ∈R F,

Pr[Rank{ȳ}{z̄}(α ·AB + β ·CD) ≤ 2] ≤ 2O(m)

|F|
+

1
2Ω(m)

,

unless

1) either {ȳ} = {ā} & {z̄} = {b̄} or {ȳ} = {b̄} &
{z̄} = {ā}, and

2) either {ȳ} = {c̄} & {z̄} = {d̄} or {ȳ} = {d̄} &
{z̄} = {c̄}.

Before we sketch a proof of Theorem 5.6, let’s see
how it is used in the proof of Theorem 2.2. In Step 3
of RECONSTRUCT, we consider the ranks of the partial
derivative matrices for Φ̂S |v̄′,ȳ′ and Φ̂S |ū′,x̄′ w.r.t. partitions
{v̄′, ȳ′} and {ū′, x̄′}, respectively. First, note that if v̄′ etc are
the correct partition of S, i.e., in ΦS , vS = v̄′ etc., then both
the above matrices have rank at most 2. We use Theorem 5.6
to show that, w.h.p., the only partition of S (into four
parts) that satisfies these two rank conditions is the correct
partition. Indeed, by the discussion preceding Theorem 5.6,
we can see that AS |v̄′,ȳ′ , BS |v̄′,ȳ′ , CS |v̄′,ȳ′ , and DS |v̄′,ȳ′

can be viewed as samples from SAMPLE2 on the variable set
{v̄′, ȳ′} (assigning S \{v̄′∪ ȳ′} to random values). Similarly
for AS |ū′,x̄′ , etc., on {ū′, x̄′}. Now, Theorem 5.6 says if
Rank{v̄′}{ȳ′}(Φ̂S |v̄′,ȳ′) ≤ 2, then, w.h.p., the variables that
AS |v̄′,ȳ′ etc. depend on must each be either v̄′ and ȳ′. Thus,
w.l.o.g., we must have v̄S = v̄′ and ȳS = ȳ′. By a similar
argument applied to Φ̂S |ū′,x̄′ , we can conclude that ūS = ū′

and x̄S = x̄′. Note that since AB and CD are defined on
two independent partitions of X , it is unlikely that A and C
depend on the same set of variables. Furthermore, we can
also see that Step 4 associates each xi with correct block
of the seed partition by applying this argument repeatedly
for the seed partition augmented with xi. This concludes the
proof that Steps 3 and 4 determine the correct partition for
Φ.

The following technical lemmas are used in the proof of
Theorem 5.6. Their proofs will appear in the full version
of the paper. Throughout this paper, LI stands for “Linearly
Independent” and LD for “Linearly Dependent.”

Lemma 5.7. Let f and g be two multilinear polynomials
over an n-sized variable set Y ∪ Z and field F. Then for
any S ⊆ F and independently chosen α, β ∈R F,

Pr
α,β∈RS

[RankY Z(α.f + β.g) > 2] ≥ 1− 2n

|S|
,

unless f and g have one of the following forms,
1) f = f1(Y)f2(Z) and g = g1(Y)g2(Z)
2) f = f1(Y)f2(Z) + f3(Y)f4(Z) (f1, f3 are LI, f2, f4

are LI) and either g = [a.f1(Y) + b.f3(Y)]g2(Z) or
g = g1(Y)[a.f2(Z) + b.f4(Z)]

3) f = f1(Y)f2(Z) + f3(Y)f4(Z) (f1, f3 are LI,
f2, f4 are LI) and g = [a.f1(Y) + b.f3(Y)]g2(Z) +
[c.f1(Y)+d.f3(Y)]g4(Z) (g2, g4 are LI and ad 6= bc)

4) f = f1(Y)f2(Z) + f3(Y)f4(Z) and g = [a.f1(Y) +
b.f3(Y)]g2(Z) + g3(Y)[c.f2(Z) +d.f4(Z)] (f1, f3, g3

are LI, f2, f4, g4 are LI and ac = −bd)
and their analogous cases, where fi’s and gi’s are some
multilinear polynomials on their indicated variable sets and
a, b, c, d ∈ F.

Lemma 5.8. Let S be a set of multilinear monomials over
{r1, r2, . . . , rn}, where ri’s are independent r.v.’s and each
ri ∈R F∗. Then for every M ∈ S there exists a set SM ⊆ S
such that

1) |SM | ≥ log |S| − 1 and
2) SM ∪ {M} is a set of independent uniform r.v.’s over

F∗.

Lemma 5.9 (Irreducibility Lemma). Let fR be the polyno-
mial computed by a random multilinear formula over the
variables set X = {x1, x2, . . . , xm} and field F sampled
using SAMPLE2. The probability that there exists a proper
partition {Y,Z} of X such that RankY Z(fR) = 1 is at most
2O(m)

|F| .

Lemma 5.10. Let {Y,Z}, with |Y | ≤ |Z|, be a partition of
variable set X = {x1, . . . , xm} such that both |Y |, |Z| are
at least γm for some γ > 0 and δ be a sufficiently large
integer constant . Let f be the polynomial computed by a
random multilinear formula sampled using SAMPLE2(X,F).
Then, with probability at least 1− 2O(m)

|F| −
1

2γm/18 log2 δ ,
1) there are at least δ distinct monomials multilinear in

Z variables such that coefficients of these are poly-
nomials in Y each containing at least δ monomials
and

2) RankY Z(f) > 2.

Proof sketch for Theorem 5.6: We first show, using
Lemma 5.7, that a random linear combination αf + βg
has rank ≤ 2 w.r.t. a partition (Y,Z) of the underlying

variable set only under very special conditions. The most
natural of these is when f and g are both of rank 1, i.e.,
f(Y,Z) = f1(Y) · f2(Z) and g(Y, Z) = g1(Y) · g2(Z).
The other (degenerate) conditions arise when at least one
of f or g has rank 2 and can be categorized into a small
number of special cases. The second part of the proof
is to show that when f = AB and g = CD and A,
B, C, and D are samples from SAMPLE2, the degenerate
conditions are satisfied with very low probability. This will
imply AB and CD must satisfy the natural condition and
hence their supports must satisfy (1) and (2). For the second
part, we use two main arguments about a random formula
according to SAMPLE2 on m variables: (i) it must have
rank at least two, w.h.p., for any nontrivial partition of
its variables (Irreducibility Lemma, Lemma 5.9) and (ii)
for any partition (Y,Z) with |Y |, |Z| ≥ Ω(m), it must
contain many monomials in Z variables whose coefficients
(which are polynomials in Y) must also contain many
monomials in Y variables (Lemma 5.10). By (i), we only
need to consider when, say f , is of Rank 2 w.r.t. some
partition (not necessarily (Y, Z)). This, combined with any
of the degeneracy conditions, implies that the number of
statistically independent monomials in Y variables in the
coefficient of a suitably chosen Z-monomial in g must be
small (since they are determined by linear combinations
given by the degeneracy conditions of a small number of
coefficients of f ’s factors). But this contradicts (ii) since (by
Lemma 5.8) there must be many independent monomials in
Y variables. �

6. CONCLUSIONS AND OPEN PROBLEMS

In this paper, we proved that multilinear arithmetic formu-
las can be efficiently reconstructed when the formula is cho-
sen randomly according to some natural distributions. This
is the strongest model of arithmetic complexity for which
such a reconstruction algorithm is currently known even if
the efficiency is in a distributional sense. A slight variant
of the worst-case reconstruction of multilinear formulas is
known to be intractable. Our result gives supporting evidence
to the general theme that mathematical techniques useful in
proving lower bounds against a model of computation should
also enable learning algorithms for that model. This general
view and the technical and intuitive connections among the
areas of lower bounds in arithmetic complexity, polynomial
identity testing, and reconstruction motivate several open
questions for future research. Some examples include worst-
case reconstruction of depth-3 constant top fan-in arithmetic
formulas (over arbitrary fields), constant top fan-in depth-4
multilinear formulas, Arithmetic Branching Programs (non-
commutative as well as suitably restricted commutative mod-
els), and so on. Worst-case reconstruction in many nontrivial
models is either very hard or provably intractable. However,
requiring efficiency only in a distributional sense appears to
bring the reconstruction problem in several powerful models

including, for example, general arithmetic formulas, within
reach and thus open up a direction of positive results in
this area. This paper may be viewed as a first result in that
direction.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees
for their thoughtful comments and suggestions which have
significantly helped us in improving the paper. We also thank
Amir Shpilka for pointing out an improvement in the field
size.

REFERENCES

[1] J. Håstad, “Tensor rank is NP-complete,” J. Algorithms,
vol. 11, no. 4, pp. 644–654, 1990.

[2] E. Kaltofen, “Factorization of polynomials given by straight-
line programs,” in Randomness and Computation. JAI Press,
1989, pp. 375–412.

[3] Z. S. Karnin and A. Shpilka, “Reconstruction of generalized
depth-3 arithmetic circuits with bounded top fan-in,” in IEEE
Conference on Computational Complexity, 2009, pp. 274–
285.

[4] A. Klivans and D. A. Spielman, “Randomness efficient iden-
tity testing of multivariate polynomials,” in STOC, 2001, pp.
216–223.

[5] A. R. Klivans and A. Shpilka, “Learning restricted models of
arithmetic circuits,” Theory of Computing, vol. 2, no. 1, pp.
185–206, 2006.

[6] N. Nisan, “Lower bounds for non-commutative computation,”
in Proceedings of the twenty-third annual ACM symposium on
Theory of computing, ser. STOC ’91. New York, NY, USA:
ACM, 1991, pp. 410–418.

[7] R. Raz, “Multi-linear formulas for permanent and determinant
are of super-polynomial size,” Journal of the Association for
Computing Machinery, vol. 56, no. 2, 2009.

[8] R. Raz and A. Yehudayoff, “Lower bounds and separations
for constant depth multilinear circuits,” Computational Com-
plexity, vol. 18, no. 2, pp. 171–207, 2009.

[9] A. Shpilka, “Interpolation of depth-3 arithmetic circuits with
two multiplication gates,” SIAM J. Comput., vol. 38, no. 6,
pp. 2130–2161, 2009.

[10] A. Shpilka and I. Volkovich, “On the relation between poly-
nomial identity testing and finding variable disjoint factors,”
in ICALP (1), 2010, pp. 408–419.

[11] A. Shpilka and A. Yehudayoff, “Arithmetic circuits: A survey
of recent results and open questions,” Foundations and Trends
in Theoretical Computer Science, vol. 5, no. 3-4, pp. 207–388,
2010.

APPENDIX

HANDLING + GATES WITH FAN-IN k

In the previous sections we described how to recon-
struct a random binary multilinear formula sampled using
SAMPLE(X,F). We now show that our algorithm, with a
few minor modifications, can also reconstruct a random k-
ary multilinear formula (where k = O(1)) i.e. a formula
sampled using the method SAMPLE(X,F) where, in Case
3, instead of recursively constructing 2 children, it constructs

k children. Hence the resulting formula would have + gates
of fanin k. As before, it can be shown that w.h.p. the
polynomial computed at a + gate in such a formula would be
irreducible. Hence if the root was a × gate then we can gain
blackbox access to the children using Kaltofen’s algorithm
and/or the algorithm of Shpilka and Volkovich [10]. The
overall strategy of the algorithm is as in the outline given
in section 3. The interesting case is where the root of the
formula is a + gate so that the polynomial computed is of
the form

f =
k∑
i=1

Ai(x̄i, . . . , x̄i+k−1) ·Bi(X \ {x̄i, . . . , x̄i+k−1})

where {{x̄i}}i∈[2k] is a partition of the variable set X
such that x̄i’s are of roughly the same size and Ai’s, Bi’s
are random k-ary multilnear formulas on their respective
variable sets. With high probability, the Ai’s, Bi’s are of
the same degree say d. As before, we obtain blackbox to the
grandchildren in two steps. In the first step, we determine
the partition of {{x̄i}}i∈[2k] of the variable set X . In the
second step, we indicate how to obtain the evaluation of Ai
(respectively Bi) at any given point.

Determining the partition. As in the case of fanin two,
the idea is that for the correct partition of X the rank of a
certain matrix will be very small whereas it will be large
for every incorrect partition. As before, the problem can be
reduced to the case where |X| is relatively small (roughly
Θ(k log n)) by first determining a seed partition and then
extending it by introducing one variable at a time. With this
lifting idea at hand, it suffices to determine whether a given
partition is “the correct one” (w.h.p over the random choice
of the formula, it will hold true that there is a unique correct
partition). The idea is that if

X =
⊎
i∈[2k]

{x̄i}

is the correct partition then for any {x̄i−1}, {x̄i} we have

f̂ = Âi(x̄i)B̂i(x̄i−1)+
∑
j 6=i

αjÂj(x̄i−1, x̄i)+βjB̂j(x̄i−1, x̄i),

where for any polynomial g, ĝ denotes the polynomial
obtained by setting all the variables from X \ {x̄i−1, x̄i}
to random values. This means that for any j < d, the
polynomial f̂ [2d−j], the homogeneous part of degree (2d−j)
of f̂ , will be of rank (j + 1) with respect to the partition
x̄i−1] x̄i. On the other hand, f̂ [2d−j] will not satisfy the
stated rank bound for any incorrect partition (w.h.p. over
the random choice of the formula).

Obtaining blackbox access to the grandchildren. We
now indicate how one can obtain blackbox access to the
Ai’s and Bi’s, given blackbox access to f and the partition
{{x̄i}}i∈[2k]. In order to determine say A1(β̄1, . . . , β̄k), one
substitutes all the variables except x̄1 and x̄2k to appropriate

values and looks at the homogeneous components of the
resulting polynomial. Specifically, make the substitution

x̄j :=

{
β̄j for j ∈ [2..k],
ᾱj ∈R F|x̄j | for j ∈ [(k + 1)..(2k − 1)]

and let the resulting polynomial be f̂(x̄1, x̄2k). It turns
out then that f̂ [2d] equals Â

[d]
1 (x̄1) · B̂[d]

1 (x̄2k). Factoring
this polynomial gives us access to A[d]

1 (x̄1, β̄2, . . . , β̄k) and
therefore to A

[d]
1 (β̄1, . . . , β̄k) as well. As in the case of

fanin two, this idea can be extended suitably to obtain
A1(β̄1, . . . , β̄k). This completes our brief description for
extending the reconstruction result to formulas with higher
fanin.

